Cmv Biorthogonal Laurent Polynomials: Christoffel Formulas for Christoffel and Geronimus Perturbations
نویسندگان
چکیده
Quasidefinite sesquilinear forms for Laurent polynomials in the complex plane and corresponding CMV biorthogonal Laurent polynomial families are studied. Bivariate linear functionals encompass large families of orthogonalities like Sobolev and discrete Sobolev types. Two possible Christoffel transformations of these linear functionals are discussed. Either the linear functionals are multiplied by a Laurent polynomial, or are multiplied by the complex conjugate of a Laurent polynomial. For the Geronimus transformation, the linear functional is perturbed in two possible manners as well, by a division by a Laurent polynomial or by a complex conjugate of a Laurent polynomial, in both cases the addition of appropriate masses (linear functionals supported on the zeros of the perturbing Laurent polynomial) is considered. The connection formulas for the CMV biorthogonal Laurent polynomials, its norms, and Christoffel–Darboux kernels, in all the four cases, are given. For the Geronimus transformation, the connection formulas for the second kind functions and mixed Christoffel–Darboux kernels are also given in the two possible cases. For prepared Laurent polynomials, i.e. of the form L(z) = Lnz + · · · + L−nz, LnL−n 6= 0, these connection formulas lead to quasideterminantal (quotient of determinants) Christoffel formulas for all the four transformations, expressing an arbitrary degree perturbed biorthogonal Laurent polynomial in terms of 2n unperturbed biorthogonal Laurent polynomials, their second kind functions or Christoffel–Darboux kernels and its mixed versions. Different curves are presented as examples, like the real line, the circle, the Cassini oval and the cardioid. The unit circle case, given its exceptional properties, is discussed in more detail. In this case, a particularly relevant role is played by the reciprocal polynomial, and the Christoffel formulas provide now with two possible ways of expressing the same perturbed quantities in terms of the original ones, one using only the nonperturbed biorthogonal family of Laurent polynomials, and the other using the Christoffel–Darboux kernels and its mixed versions, as well. CONTENTS
منابع مشابه
Multivariate Orthogonal Laurent Polynomials and Integrable Systems
An ordering for Laurent polynomials in the algebraic torus (C∗)D, inspired by the Cantero–Moral– Velázquez approach to orthogonal Laurent polynomials in the unit circle, leads to the construction of a moment matrix for a given Borel measure in the unit torus T. The Gauss–Borel factorization of this moment matrix allows for the construction of multivariate biorthogonal Laurent polynomials in the...
متن کاملBiorthogonal polynomials for two-matrix models with semiclassical potentials
We consider the biorthogonal polynomials associated to the two–matrix model where the potentials V1, V2 have arbitrary rational derivative and are constrained on an arbitrary union of intervals (hardedges). We show that these polynomials satisfy certain recurrence relations with a number of terms di depending on the number of hard-edges and on the degree of the rational functions V i . Using th...
متن کاملCauchy biorthogonal polynomials
The paper investigates the properties of certain biorthogonal polynomials appearing in a specific simultaneous Hermite–Padé approximation scheme. Associated with any totally positive kernel and a pair of positive measures on the positive axis we define biorthogonal polynomials and prove that their zeros are simple and positive. We then specialize the kernel to the Cauchy kernel 1 x+y and show t...
متن کاملBiorthogonal Laurent polynomials, Töplitz determinants, minimal Toda orbits and isomonodromic tau functions
We consider the class of biorthogonal polynomials that are used to solve the inverse spectral problem associated to elementary co-adjoint orbits of the Borel group of upper triangular matrices; these orbits are the phase space of generalized integrable lattices of Toda type. Such polynomials naturally interpolate between the theory of orthogonal polynomials on the line and orthogonal polynomial...
متن کاملMultivariable Christoffel–Darboux Kernels and Characteristic Polynomials of Random Hermitian Matrices
We study multivariable Christoffel–Darboux kernels, which may be viewed as reproducing kernels for antisymmetric orthogonal polynomials, and also as correlation functions for products of characteristic polynomials of random Hermitian matrices. Using their interpretation as reproducing kernels, we obtain simple proofs of Pfaffian and determinant formulas, as well as Schur polynomial expansions, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016